Separating Style and Content for Generalized Style Transfer

نویسندگان

  • Yexun Zhang
  • Wenbin Cai
  • Ya Zhang
چکیده

Neural style transfer has drawn broad attention in recent years. However, most existing methods aim to explicitly model the transformation between different styles, and the learned model is thus not generalizable to new styles. We here attempt to separate the representations for styles and contents, and propose a generalized style transfer network consisting of style encoder, content encoder, mixer and decoder. The style encoder and content encoder are used to extract the style and content factors from the style reference images and content reference images, respectively. The mixer employs a bilinear model to integrate the above two factors and finally feeds it into a decoder to generate images with target style and content. To separate the style features and content features, we leverage the conditional dependence of styles and contents given an image. During training, the encoder network learns to extract styles and contents from two sets of reference images in limited size, one with shared style and the other with shared content. This learning framework allows simultaneous style transfer among multiple styles and can be deemed as a special ‘multi-task’ learning scenario. The encoders are expected to capture the underlying features for different styles and contents which is generalizable to new styles and contents. For validation, we applied the proposed algorithm to the Chinese Typeface transfer problem. Extensive experiment results on character generation have demonstrated the effectiveness and robustness of our method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Style Transfer: A Review

The recent work of Gatys et al. demonstrated the power of Convolutional Neural Networks (CNN) in creating artistic fantastic imagery by separating and recombing the image content and style. This process of using CNN to migrate the semantic content of one image to different styles is referred to as Neural Style Transfer. Since then, Neural Style Transfer has become a trending topic both in acade...

متن کامل

Automatic Semantic Style Transfer using Deep Convolutional Neural Networks and Soft Masks

This paper presents an automatic image synthesis method to transfer the style of an example image to a content image. When standard neural style transfer approaches are used, the textures and colours in different semantic regions of the style image are often applied inappropriately to the content image, ignoring its semantic layout, and ruining the transfer result. In order to reduce or avoid s...

متن کامل

Towards Deep Style Transfer: A Content-Aware Perspective

Recently, it has been shown that one can invert a deep convolutional neural network originally trained for classification tasks to transfer image style. There is, however, a dearth of research on content-aware style transfer. In this paper, we generalize the original neural algorithm [1] for style transfer from two perspectives: where to transfer and what to transfer. To specify where to transf...

متن کامل

DeepWriting: Making Digital Ink Editable via Deep Generative Modeling

Digital ink promises to combine the flexibility and aesthetics of handwriting and the ability to process, search and edit digital text. Character recognition converts handwritten text into a digital representation, albeit at the cost of losing personalized appearance due to the technical difficulties of separating the interwoven components of content and style. In this paper, we propose a novel...

متن کامل

From A to Z: Supervised Transfer of Style and Content Using Deep Neural Network Generators

We propose a new neural network architecture for solving single-image analogies—the generation of an entire set of stylistically similar images from just a single input image. Solving this problem requires separating image style from content. Our network is a modified variational autoencoder (VAE) that supports supervised training of singleimage analogies and in-network evaluation of outputs wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.06454  شماره 

صفحات  -

تاریخ انتشار 2017